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A statistical thermodynamics theory of polydisperse polymer blends based on a lattice model description 
of a fluid is formulated. Characterization of a binary polydisperse polymer mixture requires a knowledge 
of the pure polymer system and the interaction energy. It is assumed that the intrinsic and interactive 
properties of polymer (for example, T*, P*, p*, and e*) are independent of molecular size. Thermodynamic 
properties of ternary and higher order mixtures are completely defined in terms of the pure fluid polymer 
parameters and the binary interaction energies. Thermodynamic stability criteria for the phase transitions 
of a binary mixture are shown. The binodal and spinodal of general binary systems and of special binary 
systems are discussed. 
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INTRODUCTION 

At different times in the history of polymer science, 
specific subjects have come to 'centre stage' for intense 
investigation because they represented new and important 
intellectual challenges as well as technological opportunities. 
Polymer blends have now come to the fore as a 
topic of major endeavour. In the field of polymer 
blends, polymer-polymer compatibility is always very 
important, especially the statistical thermodynamics 
theory of compatibility. 

Scot¢ and Tompa 2 were the first to apply the 
Flory-Huggins theory of polymer solutions 3 6 to 
mixtures of polymers, with or without added solvent, 
and found the critical conditions 7 in such systems. 
The Flory-Huggins theory gives remarkably good 
results in calculations of polymer compatibility when it 
is used with care. However, it completely fails to 
describe the lower critical solution temperature (LCST) s 
behaviour. After the discovery of the universality of LCS T 
behaviour in polymer solutions and blends, Flory and 
co-workers 9-x2 developed a new theory of solutions 
which incorporated the 'equation of state' properties of 
the pure components. This new theory of solutions 
(hereafter referred to as the Flory theory) demonstrated 
that the thermodynamic properties of the mixture 
depend on the thermodynamic properties of the pure 
components, and the LCSTbehav iour  is related to the 
dissimilarity of the equation of state of the properties 
of polymer and solvent. After this, Sanchez and 

* To whom correspondence should be addressed 

Lacombe la-~5 suggested their lattice-fluid (LF) model 
and obtained fairly good results in describing L C S T  
behaviour of polymer solutions. The Flory theory and 
the LF model are also quite successful in explaining 
the L C S T  behaviour of non-polar polymer-polymer 
blends 14'~6. When strong or specific interactions take 
place between components in a polymer blend system, it 
is not very accurate to apply the original Flory 
theory and LF model to analyse L C S T  behaviour. 
Using quasi-chemical approaches to treat the non- 
random character of a solution, Panayiotou and Vera 17 
and Renuncio and Prausnitz TM developed improved 
modifications of the Flory theory. Sanchez and Balazs ~9 
adopted a simpler approach which is quite similar to 
that of ten Brinke and Karasz 2°, who developed an 
incompressible model of binary mixtures with specific 
interactions, to perfect the LF model; these workers have 
obtained good results. 

Koningsveld, Kleintjens and co-workers 21-2s have 
dealt with the influence of polydispersity on a polymer 
solution based on the Flory-Huggins theory. Their 
results reveal that the spinodal depends on the mass- 
average chain length alone and that the critical conditions 
are determined by the mass-average chain length 
and z-average chain length only. They used mean- 
field lattice gas model for a multicomponent polymer 
system 26-29 and obtained the same conclusions as those 
mentioned above. Although the results of Koningsveld 
and Kleintjens are significant, the influences of poly- 
dispersity on phase separation are not thoroughly solved. 

The general objective in the present paper is to discuss 
the statistical thermodynamics of polydisperse polymer 
blends on the basis of LF theory and the influences of 
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polydispersity of the polymer on compatibility. The 
thermodynamics of polydispersity can be reduced to the 
LF theory of Sanchez when every component is changed 
into a monodisperse polymer. 

THEORY 

Mixture of polymer fluids 
A statistical mechanical model of pure, polydisperse 

polymer fluids has been developed 3°. The basic simplicity 
and structure of the theory enables it to be readily 
extended to mixed polymer fluids. 

A lattice is used to enumerate the number of 
configurations available to a system of N~r~-mers, 
Nzr2-mers . . . .  , Nmrm-mers and No empty sites (holes). 
An rcmer is a molecule that occupies an average of ri 
sites on a lattice of coordination number z. The polymer 
molecules consist of a series of different chain-length 
molecules, i.e. 

Ni:Nil- .I-Ni2-}-. . . -]-Nin: ~ Nij (1) 
i f 1  

ri = ~ rijNu/Ni (2) 
.i=1 

(i= 1, 2 . . . . .  m; 1, 2 . . . . .  n) 

where N u is the number of molecules whose chain length 
is % in the i component. 

The number of configurations ~ available to this 
system is given approximately by31-33: 

Uo!ItN'~/,] t )  k~iJ Nifl 

energy in the large z limit becomes (ze u remains finite): 

l = l k = l  

e~=(Z/2)elk (12) 

~ rtjNtj 
ft - r t N t - j = l  -- ~ flj (13)  

Nr Nr j = 1 

~, rkjNkj 
fk rkNk_j= 1 -- ~ fkj (14) 

N, N, ~ = 1 

where e~k is the interaction energy of a mer belonging to 
component I when it is surrounded by z mers belonging 
to component k. The interaction energies are symmetrical 

The volume of the mixture is: 

V= N,v* = (N o + rN)v* (1 5) 

where 

r = ~" xijrij = ~ xiri (16) 
ij i 

xo- -N i jN;  x i=Ni /N  = ~ xq (17) 
j r 1  

N = ~  N I j = Z  N i (18) 
i j  i 

and v* is the average close-packed volume of a mer in 
the mixture. 

The close-packed volume of the mixture is 

where 

N r -- N o A- ~ rijNij (4) 
ij 

Nq = No + ~ quNu (5) 
ij 

qijz = ru(z -  2) + 2 (6) 

(z/2)Nq = ( z /2 -  1)N, + No + ~ N u (7) 
q 

where a u is a symmetry number and 6 u is a flexibility 
parameter characteristic of chain length r u. A full 
description of these parameters is given in ref. 13. 

As the coordination number of the lattice gets larger, 
l) approaches a limiting and simpler form (the Flory 
approximation4): 

lim \ J o /  (8) 

09 u = 6uru/auer,J- 1 (9) 

fo = No/N,; fi./= rijN,.//N, (10) 

where co u is the number of configurations available to a 
rq-mer in the close-packed pure state. The fraction of 
sites occupied by ru-mers i s f  u and the empty site fraction 
isfo. 

The lattice energy (attractive) depends only on 
nearest-neighbour interactions. If hole-mer and hole-hole 
interactions are assigned a zero energy and random 
mixing of the component is assumed, then the lattice 

E* = v* ~ rijN u = rNv* (19) 
ij 

Note that the reduced volume of the mixture t? is 
independent of v*: 

V 
= - -  = (No + rN)/rN (20) 

V* 

In general, v* is some unknown function of the pure 
component v* and the composition of the mixture. This 
presents a problem because there is no ab initio method 
of determining v*. Determination of v* is tantamount to 
determining how molecules of arbitrary geometry and 
size will randomly close-pack, which is a unique and 
difficult problem in itself. Further progress here requires 
the introduction of the following two 'combining rules' 
for the close-packed mixture. 

1. The close-packed molecular volume of each component 
is conserved. If an (q) molecule occupies r~ sites in the 
pure state and has a close-packed molecular volume 
ofr°v.*,, then it will occupy r u sites in the mixture where: 

r u = r°(v*/v *) (21) 

This rule guarantees additivity of the close-packed 
volumes: 

0 * _ _  ruNuv i - ~ rijNuv* = V* (22) 
ij U 

2. The total number of pair interactions in the close- 
packed mixture is equal to the sum of the pair 
interactions of the components in their close-packed 
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pure states, i.e. 

(z/2) ~ r°.N,j = (z/2) ~, r,jN,j = (z/2)rN (23) 
i j  i j  

Equations (21) and (23) yield the following relationship 
for the average close-packed mer volume: 

where 

v* = E  q ~°v* =~', <P%* (24) 
ij i 

q~o_ r° Nij _ r °  Nq (25) 

rONi j rN 
i j  

o r°iNi 
q), - - L  ~ °° (26) 

rN j 

E r°Nij 
r ° - J (27) 

Ni 

The net effect of combining rules is to introduce a 
surface area effect. A component in a binary mixture with 
a larger mer volume is capable of more interactions 
per mer in the mixture than in the pure state. For example, 
if v* > v* then r I > r ° and r 2 < r ° (where r i and r ° can be 
given by equations (2) and (27)). Thus, a molecule of 
component 1 has, on average, (z/2)q pair interactions in 
the close-packed mixture instead of the smaller (z/2)r °. 
The increase in interactions of the first component is at 
the expense of the second component, since the total 
number of interactions is conserved. 

In the pressure ensemble, the partition function for this 
model can be written as 

Z(T,P)=  ~ f l exp[ - f l (E+PV)]  (28) 
No=0 

The above sum can be replaced by its maximum term. 
Since the Gibbs free energy G is given by 

G = - k T l n  Z(T, P) (29) 

finding the maximum term is equivalent to equating the 
free energy to the logarithm of the generic term in the 
sum and then finding the minimum value of the free 
energy. Thus 

G = E + PV-- kTln fl (30) 

Using equations (8), (11), (15) and (20), the free energy 
can also be expressed in terms of reduced variables: 

= G/(rUe*) 

= - ~ + P ~  

+ ' [ (~5-1)  ln(1--fi) + 1  In fi + ~.(q)iJ~ln(~°iJ~l 
r ij \ rij/ \(Dij/_] 

(31) 

where 

~F= T/T* T*=e*/k (32) 

P=P/P* P* =e*/v* (33) 

V 1 
~7 . . . .  (34) 

V* 

1 = 1  k = l  / = 1  l = l  k = l  

(35) 

Z,k = (e* + e~k -- 2e*)/k T (36) 

rijNij rijNij 
q~q- - -  - (37) 

rN 
E roNij 
i j  

1/r=V ~%=E ~°° ,-. o (38) 
ij rij ij rij 

fo = 1 - ¢3 f~ = t~o,j (39) 

Minimization of the free energy with respect to N O , or 
equivalently the reduced volume f, yields: 

a~  ~P = 0 (40) 

or  

~2 ..}_ .p ..[_ 7-Iln(1 _ f i ) +  ( 1 _ ~ ) ~ 1  = 0  (41) 

PV/NkT= rPO/~F= 1 - r[1 + ln(1 - ~)/~3 + ~/7"] (42) 

Equations (41) and (42) are the equation of state of the 
mixture. It is identical in form with the equation of state 
of a pure fluid 3°. 

As a special case, if the mixture consists of two pure 
polymer fluids and every pure polymer fluid obeys a Fiery 
distribution 34 in the system, i.e. 

N r v  = N*(1 --pl)Zp; "- 1 (43) 

Ur2j = U*(1 - pz)Zp~ 2j- ' (44) 

where N* and N* are the numbers of lst-mers and 
2nd-mers, and Pl and P2 are the parameters of reaction 
extent of lst-mers and 2nd-mers and the independent 
variables, respectively, in the system, then ~ is 

Tt07-  1) In(1 - f i )  C= 

+ [(p 1(1 - P 0 +  q~2(1 -P2)] In 

+ q91(1 - P0 In qh(1 - pl) 2 + q>~Pl In Pl + ~01P~ 

q~ l (1  pl)2r.~=p~" 'ln(_ _~2~ 
+ -- - \0r, j /  

+ 002( 1 --P2) In ~02(1 --p2) 2 + ~02p 2 In P2 + (,o2P2 

-}= 002( I __p2) 2 ~ r,r,j--I I,,{ ffr2]'~ 
v2 , - ~ ] (  (45) 

rzJ = 1 \ r 2 j / - '  

and the equation of state is 

~z +P+ ~F[ln(1-~)+(qhp, +qgzp2)~]=O (46) 

Chemical potentials 
Chemical potentials #i are related to the Gibbs free 

energy by: 

Pi -  ~Ni r,P,N' (47) 

G = ~ Si#  i (48) 

where the subscript N' indicates that all other mole 
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numbers except N~ are to be held constant. 

In the mixing system, N~ = N~I + Ni2 +. . .  + N~, = ~ N u. 
J 

If it is assumed that 

N i i : N i2:" ":N in = qi l :qi2:" ":qin (49) 

then 

Nij = Nilqij/qi 1 (50) 

From the above, we have 

N i = ~  Nij--  E Nilqij/qil 
J J 

= Nil  2 qij/qn = Ni iq~qii (51) 
J 

where 

Thus 

qi = qil + qi2 + " "  "-]- qin = Z qij 
J 

Ni 1 -- qil Ni 
qi 

From equation (53), we obtain: 

(52) 

(53) 

d - de* dd  
= e*Cr dNi (rN) + rNG dNi + rNe* - -  (62) 

dNi 

where d(rN)/dNi, de*/dNi and dd/dNi are calculated in 
Appendix A. For a binary mixture, i, l and k are equal 
to 1 or 2. 

If both pure components (polymer fluid) possess the 
Flory distribution 34 in the binary mixture, then: 

OG ~GI T,P, NII 

r u % 

=e*d d ( r N ) + r N d ~ e * + r N e  * d 2 (63) 
dN1 dNl ON I 

and 

__dG _ d?N n T,P,NI 
#2--  

d ~ N% T,P,~N, v 
r2j vii 

d de* d~ 
= e*~ (rN) + r N ~  + rNe* - -  

dNn dNii dNn 
(64) 

where 

Nq = qij Ni (54) 
qi 

Using equation (54), we have the following equations: 

1 rij qij Ni (55) 
qhj = r--N qi 

N, = E N~u N,, = Z N~: (65) 
rij r2j 

/~* _.~ 2 *  2 * (,01811 + 2q)1~2/3~2 + q)2/~22 (66) 

and d(rN)/dNl, de*/dN~, dG/dNi, d(rN)/dNii , de*/dNn 
and dG/dN, are calculated in Appendix B. 

rN = Z rljNq = Z riNi (56) 
ij i 

k l 

1.. Z rkNk ~1 rtNle'~t (57) (rN) 2 k 

P 
d= - ~ +  

P 

+ 7 " [ ~ - l n ( 1 - f i ) + l l n p + ~  q'--Z(piln( rijq'g qh)] 
r ij riqi k, fDijriqi 

(58) 
where 

ri = ~ rijqij/qi 
J 

(p#=Ztp#j= ~ 1 r q # J N -  1---r#N# 
j • - ~  flJ q# # - r N  

1 
- = E N i j / Z  rijNij = 2 N i / Z  riNi 
r ij ij i i 

(59) 

(fl = k,/) (60) 

= Z ~°ij/rij = E @i/ri 
ij i 

Thus, the chemical potential #i is obtained by: 

]ii-~- ~ i  r,P,N, - - d~ i  (rNe*~) 

(61) 

BINARY MIXTURES 

General binary mixture 
Stability criteria. The thermodynamic stability of a 

homogeneous phase of a single component system 
requires that the compressibility and constant volume 
heat capacity be positive, i.e. 

d~_ T > 0; --d~r V>0 (67) 
The stability of a homogeneous phase in a binary 

mixture requires, in addition to the above two conditions, 
the following: 

d#l>0; d/~z>0; d # l - d # 2 < 0  (68) 
dX 1 dX 2 dX 2 dX 1 

According to the stability conditions (68), we have the 
same stability criteria as equation (69), i.e. 

d/~2 d#----2 > 0 or > 0 (69) 
dN 1 dN 2 

where 

d/q 

dN1 

de* d dE d 
- 2~ - -  - -  (rN)+ 2e* - -  (rN) 

dNi  ON1 dN1 dN1 

+ 2rN - -  
dNi dN1 

d2s * , d~C 
t - r N G ~ 2 + r N e  ~ (70) 

dN1 dN1 
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0#2 -- 2G 0e* 0 0t~ 0 
- -  0N~2 ( rN)  + 2e* - -  ( rN)  

ON 2 ON 2 ON 2 ON 2 

_ _  02g* 02G 
+2rN OG Oe* q - r N G - - + r N e *  (71) 

0N2 0N2 0N 2 0N 2 

and 02~*/0N 2, 02G/ON 2, 02~*/0U 2 and 02G/ON 2 are 
calculated in Appendix A. 

Instability and the spinodal. If the above inequality 
(69) is not satisfied, a binary fluid mixture will phase- 
separate into two fluid phases. The curve that separates 
(meta)stable and unstable regimes is called the spinodal, 
i.e. 

OIA_2G 0~* __O (rN)+2e* OG 0 (rN)+2rN OG Oe* 
ON x ON~ ON~ ON 1 ON 1 ON~ ONa 

0%* ,02~ 
+ r N e - ~ + r N e  ~--~=0 

or  

O#2_2GOe* 0 (rN)+2e* 0(~ O 
0 N  2 0N 2 0 N  2 0 N  2 0 N  2 

02'~* , 02G 
+ r N G ~ E + r N e  ~ 2  =0  

0N 2 ON E 

(72) 

0G 0e* 
- -  (rN) + 2rN - -  - -  

ON 2 ON 2 

(73) 

In the above spinodal, we can obtain: 

T= T(P, ~ ,  ~2) (74) 

1 -F (p 2 = 1 (75) 

Thus, when P is known, the functional relation of Tand 
~o~ or Tand q~z can be obtained because there are three 
unknown variables and two equations. According to the 
above description, the spinodal curve (T~ ~Ol or q)z) can 
be drawn. The spinodal curve is the boundary of 
metastable and unstable regimes in a fluid mixture. 

Phase equilibrium and the binodal. Equilibrium 
between two phases in a binary fluid mixture is 
determined by the following conditions on the chemical 
potentials: 

#'~ =/z~ (76) 

p'2= p'~ (77) 

where the prime denotes one phase and double prime 
denotes the second phase. The locus of points (a surface) 
that satisfy these conditions is called the binodal. The 
chemical potentials in both phases must also satisfy 
inequality (69). 

Equations (76) and (77) can be used to evaluate the 
binodal curve for two polydisperse polymers. Setting the 
chemical potentials of each component equal in both 
phases, one obtains two equations: 

pi(T, P, cpl ) = ff;(T, P, ~o';) (78) 

ff2(T, P, ~o'2)= P'~(T P, q)'~) (79) 

where 

~oi + q,~ = ~ ~o'; + ~o~ = 1 (8o)  

If there are different Tvalues when P is fixed, relevant 

q¢1, q~'~, q~ and ~o~ can be solved by equations (78), (79) 
and (80). Besides the above discussion, it is essential to 
consider the following 

0#2 0P1=0 or --0 (81) 
0 N  1 0 N  2 

From equation (81), % and q~c can be solved and let 
~Pb < cPc. If the following equations are given: 

p](T, P, ~o0 = p'~(T, P, q~) (82) 

#~(T, P, 1--q~I)=U;(T, P , I --q)b) (83) 

From equation (82) we obtain ~o~=(p, and let %<q)b. 
From equation (83) we also obtain ~pl = ~o d and let % < q% 

Let q~'x and q~'~ be such that q~a<~(p'l<~q~b and 
% ~< q~ ~< ~Pd. Then, according to equations (78), (79) and 
(80), q~'~ and ~p~ or q)~ and ~o~ are solved. In general, 

tv t/ pt ~ ~ tt q~'~ #~01 or q~ #~P2 (where ~0'~ ~< ~0~ or q~2--~ q~2). However, 
when the critical point is approached, ~0'~ = ~p'~ or ~0~ = ~0~. 
The curve of T~ q/~(~o~) or T~ ~0~(~0~) is called the binodal 
curve. For the above reason, the binodal curves are very 
difficult to solve even with a computer. 

Special binary mixture 

Stability criteria. If both pure components obey the 
Flory distribution in the binary mixture, then according 
to the above discussion we can derive the following 
stability criteria: 

0/A=2-G &* 0 (rN)+2e* OG 0 OG Oe* 
ON l ONION~ I ON~ON----,(rN)+ZrNoN, ONI 

028 * 02G 
+ rNG ON 2 + rNe* 0N 2 > 0 (84) 

or  

O#2=2GOe* 3 (rN)+2e* 0(~ 0 0t~ 0e* 
ON n ON,, ON,, ON,~ ON,~ (rN)+ 2rU ON. ON,I 

02~ * 02G 

+ rNG ON 2 + rSe* 0N E > 0 (85) 

where 02e*/OS 2, 02G/ON 2, Oze*/OS 2 and 02G/ON 2 are 
calculated in Appendix B. 

Instability and the spinodal. As above, the spinodal is 

&* O 0~ O 0C 0~* 
2G ON, ON, (rN) + 2e* ON, ON, (rN) + 2rN ON~I ON--~ 

02'~* , 0 2 0  
+rNGoN 2+rNe ~ l  2=0 (86) 

or  

- 0e* 0 
2 G - -  

0C 0 0C 0e* 
(rN) + 2e* - -  (rN) + 2rN 

0Nn 0Nn 0NII 0N n 0N n 0N n 

02~* N * 02t~ 
+rNC, T~2+r ~ ~Td2=0 (87) 

CNn ONn 

According to equations (86) or (87), we can obtain the 
functional relation of Tand  q~ or Tand  q~2 when P is 
fixed. The ~/" (Pl o r  T-(D2 curve is called the spinodal curve. 

Phase equilibrium and the binodal. The binodal 
is easily obtained by interchanging the equations 
concerning general binary mixture and the equations 
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concerning special binary mixture in the derivation 
process. 

DISCUSSION AND C O N C L U S I O N  

From the above derivation, it is known that a binary 
polydisperse polymer mixture is characterized by a 
knowledge of the pure polydisperse polymer system and 
the interaction energy, and the thermodynamic properties 
of ternary and higher order mixtures are completely 
defined in terms of the pure fluid polymer parameters 
and the binary interaction energies. At the same time, it 
can also be seen that the introduction of polydispersity 
makes the statistical thermodynamics complicated and 
some equations, e.g. chemical potentials, spinodals and 
binodals, become very complex. Though it is very difficult 
to see directly the influence of polydispersity on them, 
we can be sure that it has no effect in solving the 
thermodynamic questions of polydisperse polymer blends 
even if a correction factor is introduced to reduce it to a 
monodisperse blend. 

When every component is turned into a monodisperse 
fluid, all the above results can be reduced to the LF 
theory for monodisperse fluid mixtures 1.. For  example, 
when rij  = r~, ffij  = ai,  6i j  = ¢5i, q)ij = (fli and the summation 
of j  is deprived, the following results are obtained 1.. For  
the system of n components, we have: 

( ~ = - P + P v +  T [  (f i-1) l n ( 1 - / 5 ) + l  l n / 5 + ~ ° i l n  ~ ° i - ] r  i ri COil 

fi2.~_ p ...[_ ~Iln(1 _ ~) + (1 _!)jb] = 0 

and 

where 

(88) 

(equation of state) 

(89) 

#i = ~ r,,,N' (90) 

r = E  r i x i  (91) 
i 

For  the binary mixture, the spinodal is given by: 

a2g = 0  (92) 

where 

g = e* ~ (93) 

As another example, when p l = p 2 = O  in the binary 
mixture with Flory distribution (p~ = p 2 = 0 ,  then both 
components are monodisperse), we have: 

(7,= -~+P~ 

+ 7"I ( ~ -  1) ln(1 - ~ ) + l n  fi +(pl In ¢Pl + tP2 In ~ ° ~ 2 2 ] c o l  

(94) 

/ 3 2 + p + ~ l n ( 1 - - ~ ) = 0  (equation of state) (95) 

where r l = r 2 = r = l .  The chemical potentials and 
spinodal are the same as above. 

The main conclusions of this paper are summarized as 
follows: 

1. Thermodynamic properties of polydisperse polymer 
blends are completely defined in terms of the pure 
polydisperse fluid polymer parameters and the binary 
interaction energies. 

2. The polydispersity has a great influence on the 
thermodynamic treatment of mixtures. However, the 
magnitude of its effect is far from clear due to the 
complexity of the relevant equations. 

3. Our theory is a generalized theory and the LF theory 
of Sanchez for a monodisperse fluid mixture is a special 
case of our theory. 
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APPENDIX A 
According to equations (55), (56), (57), (58) and (61) we 
obtain: 
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0 
63Ni (rN) = r i 

c3Ni rN 
= [  P ' .. r r l a #  10P 

aCJ k-1 #2 #21n(1--PI----+--Im+#aXi# r#jc-~Xi t?N~ 

+[1 --# ln(1 --#) + l l n  # + 2  ~°i In q~i 
k # r i r  i 

+~i q)i~ q i i ln (r iJqq '~ lO'  
• j riqi \ o i j r iq i / IA  ~Ni  

(A1) 

(A2) 

+ - -  1 - In # -- r i - -  qu rljqlj 
rN t r t j q, k~oqr, q# 

-- ri ~ tP~ (ln tpt + l ) + ~ qiJ ln( riJqiJ ") + (ln tPi + l )l 
t rt J qi \ ( ° i j r i q i /  

(A3) 

From the equation of state (equation (41)), we have: 

a# 
~I~( 1 r,'~ 0 '  [ l n ( l _ # ) + ( l _ l ~ # ] O '  

r-N\ - r J - a - ~ - L  \ r / _ l a N ,  

0N, 2 # -  ' + 7"(1-~)  
1 - #  

(A4) 

where 

ONi rN e .2 rle*v*-2riv* ~ qhe* (A5) 

O~F r i 2kT / ) 
ON,- rN ~-~ { ~  q),e*-e*_ (A6) 

For a binary mixture, i and l are equal to 1 or 2 in 
equations (A 1)-(A6). 

According to equations (A2) and (A3). we have the 
following equations when i = 1 or 2: 

(~2g. 2r 2 
-- (rN) i (3E* + ~.* -- 4~o ~e*~ -- 4~o2 e.*2) (A7) ~N 2 

- - - r - - i  7-~2 4 aN2 1 ln(1-#) #z # r#JaN. #aN2a 

+ [ 1 ~  ln( 1 -  #)+ l ln  # + ~011n qh 
r r 1 

+ (Pl  E q l j  ln(rljq l j ~ + ~0_.22 In ~0 2 
rl J ql \(oljrlqx/ rE 

_{_(p2 E q2j ln(  r 2 j q 2 j ~  1 ~ 2 ~  
r2 J q2 \o )2 j r2q2 /A  6qN2 

+ # #3 
2 d# +21- ln(1-#) 1 F 1.-] 0# O '  
#20Na L #2 -P #-] ~ a  aN. 
2 ' (  ~ ) a #  

+ - - - -  1 -  
rN # aN. 

+ - l n # - r .  L q~k~.qkiln( rkJqkJ I 
k =1 rk J qk \Ok j rkqk /  

--r. L ~0k(lnq~k +1) 
k=l  r k 

+~q"Jln( r"jq"J')+(lnq%+l)l 
J qa \('Oajraqa/ 

-1- ~. a N  a ~Na~L\ j r l j  O)lj/ 

+ ~ - - l n - -  
J r2j (1)2 1 

where 

(A8) 

,A9, 

aN. L \  j rlj (.Olj) rEj e)2j.,'A 

F 2 (Pk qkj ( rk jqk j  _ r. 2r a ~. ~ In + 2r. z_. ~°k (ln q~k + 1) 
(rN) 2 L k = 1 rk j qk \~Okjrkqk/ k = 1 rk 

--2 ~ q"J l n ( ~ - - 2 ( l n  q~. + 1)+r"+ 1--2~0a 1 
• qa \O).iraq~/ r q~a d 

(A10) 
From equations (A4) to (A6), we have: 

l (aN  

- [ 2  (1 _# )2 j \ aN . j  

+ 2 _ -  - 1 - ;.IJ ~'ga t3ga I'- rg  \ ~3N a 

rN rJ~3N a (rN) 2 

x { 2 # -  ' 1 _ # + ' ( 1 - ! ) }  -1 (All) 

82P-- raP F(3 4 ) (  
ONE (r N e* )Z L \ - -51=1L q) te*z r.e* v* -- 2r.v* t = lL qhe.* 

I )( 0 . *  O* + r . e  v. + 2  q)te*t-e* rav*+raV . )  
/ \1=1  

+ (r a V a C~* * 
/=1 

• * * (A12) - 2r.v qhe.~ 

c~Na. (rge*) 2 

+ 3(,=~ 1 qhea*--e*)--(e*+l~=l qhe*,)] (A13) 

In equations (A7)-(A13). a = 1 or 2. 
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APPENDIX B 

For a binary mixture 
following can be given by: 

rN = N* + N* 

N,=N*(1-p 0 Nn=N~(1-p2) 

N* N* 
¢1 = - ~  ¢:=rN 

Then, we can obtain the following functional relations: 

rN =f,(T, P, N~, Nu) (B4) 

8* =f2(T, P, NI, NII) (B5) 

(~ =f3(T, P, N,, Nn) (B6) 

Thus, we have: 

of the Flory distribution, the 

(B1) 

(B2) 

(S3) 

8 1 
8N~ (rN)= 1 - Pl (B7) 

Be* 2¢2 
- -  --  [-¢'(8~1 - -  ~12) "~- ¢2(~12 --822)'] ( a 8 )  
8N~ rN(1-p 0 

=J" P 7,1n0-~) 7, 
8N~ (3 

7"['¢1( 1 - - P l )  + ¢2( 1 --P2)].'~ 6~fi -+ 
p J 8N! 

1 8 P  87" {1~_~ ln(1 _ ~) 

+ [¢1(1 - P 0 +  ¢2(1 -P2)] In 
+¢,(1 - p , )  In ¢,(1 -p l )2  + ¢1pl lnpl  

+¢1Pl + ¢ 1 ( 1 - p l )  ~ ~ p[-,~-i In ~r,~ 
rlj = 1 ~rlj 

+ ¢2( 1 --P2) In ¢2(1 --p2) 2 + ¢2P2 In P2 + ¢2P2 

-~ rgO~p,)  (p2-pl) In ~+(1 - P O  In ¢,(1 -p , )2  

+Pl  In Pl +(1 - p l )  ~ ~ pf~j-I In a,~j 
rlj ~rlj 

- (1  --P2) In ¢2(1 --p2) 2 --P2 In P2 

82e * 2¢2 {¢2(~? , -- 2e* 2 + e*2) 
8N 2 [rN(1--p,)] 2 

(B9) 

(too) 

82(~ f P 7"1n(1-~) 7" 
8N 2=~ - 1 ~2 ~2 

7, "~ 82p 
+ ff [¢,(1 --Pl) + ¢2( 1 -- P2)]; 8N 2 

1 82P 827, ( 1 - - ~ . . .  
+ ~ ~ !2  + 0---~12 l - - ~  - l n ( ' - k )  

+ [ ¢ , ( 1  - - p , ) +  ¢2(1  - -P2) ]  In (3 

+ ¢x(1 --p,) In ¢1(1 --pl) 2 + ¢lPl In Pl 

+ ¢1Pl + ¢1( 1 --Pl) 2 2 p[O- 1 In arv 
ru ~r~j 

+ ¢2(1 -P2) In ¢2(1 -p2)  2 + ¢2P2 In P2 

r~j In O'r2j~ +¢2P2+¢2(1--p2)E~P~71 ~ J  

( 2 P 27" 7" 7" 
+ ~ + ~ -  In(1 - P)-~ - -  ~ / 3 2 ~ 2 ( 1  -/~) 

-pg]} [¢1(1-p0+¢~(1 
{@'~2 2@8P { ~ 1 

x - -  F2 -- ln(1--t~)---Z 
~,SNI) /32 8 N I S N  I P 

t _pg]) ~ ~ 87" 
+ _[¢,(1 -- P0 + ¢2( 1 

p 8Nl 8NI 

2¢1(P2 - P07" 8/3 4- 2~'(P2 - Pl) In + P 
rN(1-pO~ 8Nl ( 

+(1 - p 0 1 n  ¢1(1 -p , )2  + pl lnpl 

+ (1 - p 0 2  )-'. p;'J- 1 In arv-  (1 -P2) In ¢2(1 -p2) 2 
rlj (~rij 

--P2 In P2--(1 --P2) 2 )-~ p~2j- 1 In a,~j'~ ¢2 87" 
r~j ~ J  rN(1--pO 8N~ 

{ 1 d [rN(~__pl)]2 ¢2 + ¢1 ¢2 d 

- 2[(p2 - Pl) In ¢3 + (1 - Pl) In ¢,(1 - p02 + Pl In Pl 

+(1 - p 0 2  ~ p;~J- 1 In %J-(1 -P2) In ¢2(1 -p2) 2 
rlj ~rlj 

r2j In tTrzJl~ (Bll) --P2 In P2 -- (1-- p2) 2 ~ p~:j-1 ~ A J  

where 

@ 
8N, 

¢fi~ _p,) 
rN(1 - PO (P2 - - - - - -  

8P 87" 
8N~n(1-P)+(¢lPl + ¢2PgPq 

8N I 
7" 

2fi-  + 7"(¢1Pl + ¢2P2) 1-p 
(m2) 

oP 
aNt 

P¢2 
rN(1 -p l )e  .2 

X {E (V 1 --V2)--2V ['¢I(E11--E12)"~¢2(812--8~2)]} 
(B13) 

07" 
8Nl 

2¢2kT -~2)+  ¢2(~12-~'2)3 rN(1 -p l )£  .2 [¢1(e1"1 * * 

(B14) 
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02~ 

ON?={ 

a2P 02~ 
ON 2 ~ [ln(1--fi)+(q~lPl +~02P2)fi] 

_~)2- j \ ~ , /  

-+-2I~--(~01p1+ q~2P2)] 0~" 0fi 
~ ONI c3NI 

2(P2--p0tp2/5 0~" 2(p2--Px)(P2 ~" 0/5 b 
rN(1-pl)  cgNi rN(1-px) O N  l 

2(p2 - -  P 1)¢P2 Tfi.]? 

[ rN(1-p0]  2 J 

[ ]_1 
"F +(q~lp1+~o2P2) ~. × 2#- -1_  # 
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(B15) 

a2p 

aN~ 
2Pq~ 2 ~'4(,02 v* _ _  * * +.,*, Ig* ~* "CI2 

[rN(1--pl)e*]2( e* [ -~01(e l l - -g t2)  W2t 12--  221A 

+ 2[v* - ~02(v* - v2)] [q~ 1(811 - -  e l  2) -t- q)2(g 12 - -  ~22)3 

- -  ~*(1)~ - - / ) 3 ) -  ~02V*(E~I - -  2~ '2  + ~'2) t (B16) 

ON 2 - [ r N ( 1  - -  p 1)/~*12 [q) 1(e1"1 - - /~2 )  + ~02(/3~2 - / ~ 2 ) ]  2 

+ 2['~01(8"1 --/~12) "+ ~02(/~ 12 - -  g22)] 

- ~02(~'1 - 2e'2 + ~'2) t (B17) 

The expressions for (O/ONll)(rN), Oe*/ONii, O~/cgN., 
a2e*/ON 2 and 02G/0N~ are easily obtained by interchanging 
the indices 1 and 2 or I and II. 
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